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a TREFLE UMR 8508, Esplanade des Arts et Métiers, 33405 Talence Cedex, France
b LRBB UMR 5103, Domaine de l’Hermitage, 69 route d’Arcachon, 33610 Cestas Gazinet, France

Received 23 December 2004; received in revised form 4 May 2005
Available online 4 January 2006
Abstract

A general method combining the volume averaging technique and image analysis is proposed to determine the effective thermal con-
ductivity tensor of real fibrous materials featuring local anisotropic thermal properties. The application of mathematical morphology
tools on 3D images of wood based fibrous insulators allows a thorough investigation of the microstructure of these materials. A repre-
sentative elementary volume is determined and the geometrical structure and local anisotropy are studied and quantified. The classical
closure problem coming from the one equation model is solved on the 3D thermal conductivity tensor field and the effective thermal
conductivity is computed. Good agreement with available experimental data is achieved.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Macroscopic description of heat transfer in a heteroge-
neous medium may be obtained by the use of up-scaling
methods, allowing the definition of a homogeneous med-
ium based on the knowledge of the local properties and
geometry of the microstructure. The aim of this paper is
to show that the combination of 3D image analysis with
the volume averaging technique provides a useful tool to
compute the thermal macroscopic properties of real com-
plex materials.

The volume averaging method is, among other upscaling
techniques [1], well suited for the determination of macro-
scopic properties from 3D images of a medium microstruc-
ture. It has been extensively used to predict the effective
transport properties of heterogeneous ordered or disor-
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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dered media [2,3]. The macroscopic heat transfer equations
are obtained by averaging the local equations within a rep-
resentative elementary volume (REV). The effective thermal
conductivity is expressed in terms of local temperatures
integrals. One has to solve a closure problem to map the
local temperatures into volume-averaged temperature and
thus determine the macroscopic thermal conductivity. Dif-
ferent modelisations may be envisaged depending on the
validity of the local thermal equilibrium assumption. When
this condition is satisfied, a classical one-equation model
[4,5] correctly describes macroscopic heat transfer in a mul-
tiphase system. However, the constraints that would deter-
mine whether this approach is valid or not have not been
clearly identified yet [6,7]. In a more recent study [8], a
one-equation model is proposed that does not require an
absolute thermal equilibrium. However, there still remains
situations in which a single governing equation approach
is not satisfactory, thus two- [9], or even three- [10], equa-
tions models have been introduced.

Even though the volume averaging method has a solid
theoretical background and has been proven to be a robust
method, its application to the prediction of macroscopic
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Nomenclature

Abr area of b–r interface contained in the averaging
volume (m2)

Abe area of entrances and exits for the b-phase con-
tained within the macroscopic system (m2)

Are area of entrances and exits for the r-phase con-
tained within the macroscopic system (m2)

a square root of the wood fibre inner porosity
bb vector field that maps $hTbib onto ~T b in the b-

phase (m)
br vector field that maps $hTrir onto ~T r in the r-

phase (m)
Cp specific heat (J kg�1 K�1)
g gravitational acceleration (m2 s�1)
h distance between two points of an image in a

given direction (m)
~Kb spatial deviation of the conductivity tensor in

the b-phase (W m�1 K�1)
~Kr spatial deviation of the conductivity tensor in

the r-phase (W m�1 K�1)
Kb local conductivity tensor in b-phase

(W m�1 K�1)
Kr local conductivity tensor in r-phase

(W m�1 K�1)
Keff macroscopic thermal conductivity (W m�1 K�1)
Kwf local thermal conductivity tensor of the wood

cell-wall (W m�1 K�1)
hKbib intrinsic b-phase average conductivity tensor

(W m�1 K�1)
hKrir intrinsic r-phase average conductivity tensor

(W m�1 K�1)
Klong longitudinal component of the thermal conductiv-

ity tensor of homogenized wood fiber (W m�1

K�1)
Ktrans transverse component of the thermal conductiv-

ity tensor of homogenized wood fiber (W m�1

K�1)
K 0l longitudinal component of the thermal conduc-

tivity tensor of wood fibre cell-wall
(W m�1 K�1)

K 0t transverse component of the thermal conductiv-
ity tensor of wood fibre cell-wall (W m�1 K�1)

k thermal conductivity (W m�1 K�1)
kair thermal conductivity of air (W m�1 K�1)
kparallel theoretical thermal conductivity for a parallel

arrangement (W m�1 K�1)
kserial theoretical thermal conductivity for a serial

arrangement (W m�1 K�1)

L macroscopic length scale (m)
lc correlation length (m)
li i = 1, 2, 3, lattice vectors
lb characteristic length of the b-phase (m)
lr characteristic length of the r-phase (m)
N Planck number
p volume fraction of the fibres
P permeability (m2)
Ra* modified Rayleigh number
Tb local temperature in the b-phase (K)
Tr local temperature in the r-phase (K)
~T b spatial temperature deviation in the b-phase (K)
~T r spatial temperature deviation in the r-phase (K)
hTbi average temperature in the b-phase (K)
hTri average temperature in the r-phase (K)
hTbib intrinsic b-phase average temperature (K)
hTrir intrinsic r-phase average temperature (K)
hTi average temperature (K)
nbr normal unit vector directed from the b-phase to

r-phase (m)
nrb normal unit vector directed from the r-phase to

b-phase (m)
r radius of the averaging volume (m)
r position vector (m)
t time (s)
V averaging volume (m3)
Vb volume of the b-phase contained in the averag-

ing volume (m3)
Vr volume of the r-phase contained in the averag-

ing volume (m3)
Z empirical factor for reducing the thermal con-

ductive efficiency of the wood fibre cross wall

Greek symbols
b volumetric thermal expansion coefficient of air

(K�1)
�b volume fraction of the b-phase contained in the

averaging volume
�r volume fraction of the r-phase contained in the

averaging volume
�air volume fraction of the air in insulator materials
�fibres volume fraction of the fibres in insulator materi-

als
qair mass density of air (kg m�3)
qb mass density of the b-phase (kg m�3)
qr mass density of the r-phase (kg m�3)
lair dynamic viscosity of air (kg m�1 s�1)
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properties of real complex materials is not a trivial task
[11]. Difficulties may actually arise when determining the
local properties fields, or when one has to choose an aver-
aging volume which satisfies the length and representative-
ness constraints required by the averaging process.
In this work, we are interested in studying fibrous mate-
rials and predicting their macroscopic thermal properties.
These materials often present anisotropies that appear at
different scales. The local physical properties may indeed
depend on the local orientation of the fibres, and the fibres
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arrangement may be strongly anisotropic at the macro-
scopic scale.

Two wood fibres based materials, intended for building
insulation, are considered in this study. The first one is a
wood/polymer composite featuring 20% of polymer fibres
and 80% of wood fibres, in fibres volume fraction, with a
very low density of 0.045. The other insulator is exclusively
wood based and presents a higher density (0.17). Visualiza-
tion of these materials by X-ray tomography reveals a
rather complex and anisotropic microstructure. Further-
more, wood fibres cover a wide range of diameters, lengths
and inner porosities. In addition, as we will see later, the
fibres present an orthotropic local thermal conductivity.
This makes local orientation an important parameter.

In the first part of this paper, we show that image anal-
ysis tools coming from mathematical morphology concepts
[12–15] allow a thorough investigation of the microstruc-
ture. Some measurements are realized in order to find a
representative elementary volume. The study of the anisot-
ropy is done through the use of covariograms and local ori-
entations computation. We will show that these tools allow
a good quantification of the medium anisotropy.

In the second part, the averaging process is described.
Two steps are involved; first, the wood fibres are homoge-
nized using measured values of the fibres porosity and the
local orientations field. Then, the averaging method is
applied on the previously defined representative elementary
volume. The particular discretization method used to deal
with full tensor equations that arise in the closure problems
is also described. Numerical results are finally compared to
the experimental data obtained by hot-wire and hot-strip
methods [16].

2. Microstructure characterization

Three dimensional images of wood fibres based insula-
tors are realized using X-ray tomography by absorption
Fig. 1. Longitudinal section before (a) and a
at the ESRF (European Synchrotron Radiation Facility)
in Grenoble (France). Resolution of images is chosen to
be 4.91 lm/pixel, in order to visualize wood fibres inner
porosity and to obtain reasonable accuracy for the smallest
fibres (diameter around 20 lm). The samples are cylinders
with height and diameter of about 1 cm, leading to rather
large grey level images of 20483 voxels. Smaller volumes
are then extracted from the raw image in the core of the
sample, to avoid surface modifications induced by the
material cutting.

Details about tools used for the following image pro-
cessing and analysis are not provided here, as they call
upon concepts from mathematical morphology theory,
which is beyond the scope of this paper. See [17] for a brief
overview of tools and applications and [12–15] for more
extensive and theoretical reviews. Here, we will only
describe briefly the main steps involved in the image
processing.

First, the noise is removed in the raw grey level images
using an opening by reconstruction [18], which suppresses
small particles without modifying the dynamics of the con-
tours. The next step consists of image segmentation, i.e.
identification of the different phases. A threshold value is
chosen according to the grey level histogram and the
expected porosities of the materials. A binary image is then
obtained featuring only two phases, fibres and air. Fig. 1
presents the effect of the filtering and segmentation process
on a longitudinal section of the wood/polymer composite
insulator. Fig. 2 represents the 3D visualization of the
sample.

Finally, 3D informations can be extracted from the seg-
mented image. In this section, the wood fibres porosity,
which is a key parameter for the fibres homogenization,
is computed. Then, the effect of the size of the treated vol-
ume over various measurements is studied. A representa-
tive elementary volume is proposed, based on the
constraints inherent to the averaging method. At last, local
fter (b) image filtering and segmentation.



Fig. 2. Visualization of a binary sample of size 5 · 5 · 0.6 mm3.
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orientations of the fibres are computed, which allow a thor-
ough analysis of the material anisotropy. In this study,
both materials are characterized in the same way, but only
results and figures concerning the wood/polymer compos-
ite material are presented.
2.1. Wood fibres porosity

Wood fibres present an inner porosity, called lumen, in
which the sap flows through when a tree is alive. A mean
value of inner porosity may be evaluated by a simple mea-
surement of the image volume (i.e. number of voxels)
before and after lumens filling. Lumens are filled using
morphological operations: first, a closing is performing in
order to disconnect the fibres porosity from the outer
porosity and then, a closing by reconstruction fills the fibres
remaining inner porosity.

Fig. 3 illustrates the filling process on a longitudinal sec-
tion of a fibre. A fibre porosity of 26% is computed for the
two studied materials, which is in good agreement with val-
ues given by [19].
Fig. 3. Example of a fibre section bef
2.2. Averaging volume determination

The application of the volume averaging method
requires that some length scale constraints be satisfied [9].
Indeed, the averaging volume size has to be large compared
to the local heterogeneities and small compared to the mac-
roscopic scale. The choice of a REV is often based on the
study of one parameter like the porosity, and usually there
is no study of other geometrical, morphological or topolog-
ical aspects. While this may not be necessary with a med-
ium with calibrated geometry, it is very important to
carefully characterize the microstructure in the case of real
anisotropic random materials.

In practice for a two-phase medium (b and r) the fol-
lowing length scale constraints have to be verified:

lb; lr � r � L ð1Þ
The idea behind these length scale constraints is that the
averaging volume has to be a representative elementary
volume. It should be sufficiently large so that it contains
all the geometrical features of the whole medium. Also,
when dealing with a non-periodic medium, the periodic
boundaries conditions used to solve the closure problems
require that results obtained within a periodic cell be rep-
resentative of the whole material. Intuitively, we can as-
sume that this behaviour may be achieved when the
correlation length lc is much smaller than the REV’s
dimensions. It should be noted that the length scale con-
straint may dramatically vary with the medium geometry
and the studied process. Therefore, it is difficult to get esti-
mates on a given problem before performing numerical
experiments. If we refer to the literature, estimates like
r � 10lc are often considered [20,21], which give us an
order of magnitude. An interesting analysis of the influ-
ence of size and shape of the averaging volume on the geo-
metrical spatial moments of disordered media may be
found in [22,23]. However, it has been found that the sta-
bilization of the spatial moments does not imply that the
considered volume is a REV. Here, our aim is to show
that a REV may be estimated with respect to the stabiliza-
tion of various geometrical features like porosity, pores
size distribution, fibres diameter distribution and correla-
tion lengths estimates.

On the practical side, the images may be downsampled
to a 9.82 lm/pixel and even 19.64 lm/pixel resolution in
order to make the size of the images compatible with the
memory and computing time constraints, when working
ore (a) and after (b) lumen filling.
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on large volumes. Special care is taken so that the connex-
ity and porosity remain close at different resolutions. It is
worth mentioning that a connexity study has been per-
formed though not presented here. It has been shown that
the fibre network is almost entirely connected, even when
small volumes are considered.

2.2.1. Real porosity

The porosity values measured on the composite insula-
tor for different volume sizes are plotted in Fig. 4. The
porosity is stabilized from small volumes around 4
(2.5 · 2.5 · 0.6) mm3 and slightly fluctuates around a mean
value of 93.4%, which is the same as the porosity measured
on the whole sample.
Fig. 4. Evolution of porosity with

Fig. 5. Distribution of the
2.2.2. Size of the pores and of the fibres

The size distribution of the fibres and of the pores can be
assessed performing, respectively on the set of the fibres
and of the pores, successive openings by spheres and cubes.
It is referred in the literature as a granulometry by openings

[13].
First, a granulometry performed on the set of the fibres

allows the measurement of the distribution of their diame-
ters. Granulometric curves are reported in Fig. 5 for differ-
ent sizes of the treated volumes. We may remark that a size
of 31.8 (5 · 5 · 1.26) mm3 is required to include the wood
chips with diameters larger than 200 lm. One may however
notice that this class of fibres represent less than 2% of the
fibres volume, thus their importance in the heat transfer
the size of the treated volume.

diameter of the fibres.



Fig. 6. Evolution of the size of the pores distribution with the size of the treated volume.

Fig. 7. Angular notations.
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process may be questionable. If we choose to ignore them,
the stabilization of the distribution occurs at a much smal-
ler volume size of 13.4 (3.8 · 3.8 · 0.93) mm3. The mean
fibre diameter computed on the largest volume is 64.8 lm
with a standard deviation of 37 lm.

Then, the pore size distribution can be achieved in a sim-
ilar manner. However, considering the high connectivity of
the pores and their varied shapes, a granulometry per-
formed on the set of the pores informs us more on the inter
fibres distance than on a real pores size distribution. The
influence of the size of the treated volume on the distribu-
tion is shown in Fig. 6. A gaussian curve is also plotted,
with mean (322 lm) and variance (153 lm) computed from
the distribution measured on the largest volume (31.4
(5 · 5 · 1.26) mm3). One can note that the larger the vol-
ume is, the closer the distribution is to a gaussian curve.
These results are a strong indication of the random nature
of the fibres arrangement. It seems that the distribution is
reasonably close to the gaussian curve from a volume of
13.4 (5 · 5 · 1.26) mm3.

2.2.3. Structure analysis
The study of the spatial distribution of the phases may

be realized by computations of the non-centered covariance,
which is defined as the probability for two points to belong
to the same phase [13,14]. From this definition, covariance
may be used to evaluate correlation length. Covariograms,
i.e. representations of covariance along defined orienta-
tions, are also useful to detect anisotropy of the whole
structure.

Covariograms are computed on several directions con-
tained in the three planes xOy, xOz and yOz (expressed
in spherical notations {h, u}, see Fig. 7), on a sample of
size 31.8 (5 · 5 · 1.26) mm3. The variable h represents here
the distance between two points in a given direction. The
covariograms for all directions are presented in the
Fig. 8. These curves indicate the anisotropy of the struc-
ture. Indeed, it seems that the fibres are contained globally
in planes parallel to the xOy plane (u = 0), and orientated
especially along the Ox axis (corresponding to an angle of
{0�, 0�}). This result was in fact expected since the material
is compressed along the Oz direction during the manufac-
turing process.

When the correlation between two points vanishes, the
non-centered covariance tends to an asymptote of equation
y = p2, where p is the volume fraction of fibres [12]. The
correlation lengths may therefore be estimated when the
covariance curves come close to the asymptote. The corre-
lation length values for the tested directions are evaluated
between around 0.5 mm and 0.9 mm, corresponding
respectively to transverse and longitudinal directions.

2.2.4. Conclusion
In this section, the effect of the size of the treated volume

over various geometrical features of a sample was studied.
An asymptotic behaviour was observed thus proving the
existence of a REV for the measured properties. Actually,
only numerical computations will tell if this volume is also



Fig. 8. Experimental covariograms for all tested directions.

Fig. 9. Local directions field on a 2D test image.
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representative for the heat transfer process, and thus may
validate this analysis. Sufficient representativeness for the
measured geometrical parameters is achieved within a vol-
ume larger than 13.4 (2.5 · 2.5 · 0.93) mm3.

The expected anisotropy of the fibrous network is con-
firmed by the study of covariograms. Finally, the correla-
tion lengths are found to be smaller than the size of the
chosen REV, even if the constraint r � 10lc is not satisfied.
The averaging method has, however, been proven to be
quite robust regarding this constraint and particularly in
the case of purely diffusive processes [11].

2.3. Local directions

The up-scaling process requires the knowledge of the
local physical properties of the studied material. As we
mentioned earlier, the wood fibres present orthotropic ther-
mal conductivity. It is therefore necessary to know the local
directions of the fibres to be able to define the principal axis
of the local conductivity tensor.

In order to find the longitudinal direction of a voxel of a
fibre, a new definition based on morphological openings is
proposed for multi-scale binary images. The description
of this tool is beyond the scope of this paper and will not
be discussed here. The developed algorithm allows the
detection of the local orientations in the 13 directions that
do not introduce any bias in the cubic lattice, leading to a
step of p

4
for the angles h and u. This choice is made in this

first attempt to avoid discretization errors, and to reduce
the computing time, which is an important parameter when
working with large 3D images.

A field of local directions computed on a simple 2D
image, for the sake of clarity, is presented in Fig. 9, with
4 identifiable directions. The local directions fields are com-
puted relatively quickly even on large 3D images since only
simple morphological operations are required.
The distribution of the local orientations can be assessed
from the computed fields. The volume fractions of the
fibres for each tested direction, measured on a sample with
a size of 31.8 (5 · 5 · 1.26) mm3, are reported in Fig. 10.
This analysis supplements the study of the covariograms
by the mean of local informations. The anisotropy of the
sample is here very well identified and quantified, as more
than 60% of the fibres voxels are oriented on longitudinal
planes (parallel to xOy) and only 1% is along the transverse
direction (along the z-axis).

The heat transfer model may now be developed with the
help of all the results presented in this section.



Fig. 10. Distribution of the local orientations.
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3. Macroscopic model for heat transfer in porous media

3.1. Wood fibres thermal conductivity

As previously mentioned, the thermal conductivity of
the wood cell-wall is orthotropic:

Kwf ¼
K 0l 0 0

0 K 0t 0

0 0 K 0t

2
64

3
75 ð2Þ

Values of K 0l ¼ 0:88 W m�1 K�1 for the longitudinal com-
ponent and K 0t ¼ 0:44 W m�1 K�1 for the transverse
components are well identified [24]. However, the wood
cell-wall may be distinguished from the lumen only at a suf-
ficiently high resolution. The use of high resolution images
is not compatible with the size of the REV, as it would im-
pose too large memory requirement and extensive compu-
tation times. Therefore, lower resolutions have to be
Fig. 11. Geometrical model for a wood fibre (a) and t
considered. As a consequence, values of thermal conductiv-
ities have to be known for filled fibres. This step constitutes
a first up-scaling process for the wood fibres. A model de-
rived by [24] is chosen to homogenize the wood fibres ther-
mal conductivity, which depends on the fibres porosity. In
this approach, the main drawback is that a fibre is sup-
posed to have a simple geometric structure, as presented
in Fig. 11a. The parameter a is the square root of the fibre
porosity. The longitudinal conductivity component is then
easily expressed as

K long ¼ K 0lð1� a2Þ þ kaira2 ð3Þ
The transverse conductivity is more complex to obtain, and
the chosen conductivity model is depicted in Fig. 11b. The
factor Z is introduced to reflect that the entire cross-wall
(parts of the cell-wall perpendicular to the heat flux) is
not effective for conduction. Z is determined from experi-
mental data (Z = 0.72) and the empirical relation is given
in [24]. The transverse conductivity is then
ransverse conductivity model (b) described in [24].
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K trans ¼
1� að ÞZK 02t þ aZkairK 0t

1� að Þ2K 0t þ að1� aÞkair þ aZK 0t
ð4Þ

Values of Klong = 0.66 W m�1 K�1 and Ktrans =
0.3 W m�1 K�1 are calculated with the previously mea-
sured wood fibres porosity of 26%. Using these values in
conjunction with the local directions field allows to define
the local thermal conductivity field. On a side note we
may add that the polymer fibres thermal conductivity,
which is isotropic and around 0.3 W m�1 K�1, is the same
as the transverse conductivity for the wood fibres. The local
longitudinal component is thus overestimated when assim-
ilating polymer fibres to wood fibres. However, the fact
that the polymer fibres represent around only 20% of the
fibres volume fraction (and thus only between 1% and
2% of the volume of the REV), is an indication that the
error committed is a priori small regarding the macroscopic
conductivity.

3.2. Conductive, convective and radiative contributions

In this work, only diffusive heat transfer is considered.
This choice of neglecting convective and radiative heat
transfer may seem to be a strong assumption in this kind
of high porosity materials. A study of appropriate dimen-
sionless numbers is proposed to justify this approach.

In order to evaluate the relative importance of the con-
vective heat transfer, the modified Rayleigh number Ra*

[25] is calculated:

Ra� ¼ gbq2
air

lair

� P
k
� DT � L ð5Þ

where g is the gravitational acceleration (m2 s�1), b is the
volumetric thermal expansion coefficient of air (K�1), qair

is the air mass density (kg m�3), P is the permeability
(m2), DT is the temperature difference (K) between the
two sides of the sample, L is the material thickness (m), lair

is the dynamic viscosity of air (kg m�1 s�1) and k is the
thermal conductivity W m�1 K�1.

The convective heat flow may be ignored if Ra* is less
than 40. The values of DT = 25 K for the temperature dif-
ference and L = 0.25 m for the thickness are chosen so that
they correspond to real use conditions, which are far more
favorable concerning the apparition of convection than the
experimental conditions. The conductivity value of
0.05 W m�1 K�1 comes from experimental data. The value
of permeability is calculated by the Kozeny-Carman equa-
tion [26] leading to an estimate of 4.5 · 10�9 m2. Even with
these conditions the modified Rayleigh number is close to 1
so convection may be neglected with confidence regarding
conduction.

Concerning the radiative contribution, it is intuitively
appealing to consider it negligible since the material is
to be used at low temperature, typically below 293 K.
One may calculate the Planck number N in order to eval-
uate the importance of radiative transfer over conduction
[27]:
N ¼ k

4n2rT 3lp

ð6Þ

where lp is the mean free path of photons, n is the refractive
index of air (n = 1) and r is Stephan’s constant
(5.68 · 10�8 W m�2 K�4). If we assume that the mean free
path of photons is equivalent to the mean inter-fibre dis-
tance, computed previously (322 lm), then N = 27 at
T = 293 K. Since N > 10, the radiative transfer may be ne-
glected regarding conduction.

Keeping these considerations in mind, we are now in a
position to move on to the development of a purely con-
ductive macroscopic heat transfer model.

3.3. Volume averaging method

3.3.1. Heat transfer equations

The governing differential equations and boundary con-
ditions for transient conductive heat transfer in a medium
constituted by two phases r and b, assuming that qCp is
constant in each phase, are given by

ðqCpÞb
oT b

ot
¼ r � ½Kb � ðrT bÞ� in the b-phase ð7Þ

T b ¼ T r on Abr ð8Þ
nbr � Kb � rT b ¼ nbr � Kr � rT r on Abr ð9Þ

ðqCpÞr
oT r

ot
¼ r � ½Kr � ðrT rÞ� in the r-phase ð10Þ

T b ¼Fðrb; tÞ on Abe ð11Þ
T r ¼ Gðrr; tÞ on Are ð12Þ

It is also useful to recall here some definitions of the nota-
tions used in the volume averaging method:

The average hWii of a quantity Wi defined in the phase i is
given by

hWii ¼
1

V

Z
V i

Wi dV ð13Þ

and the intrinsic phase average hWiii may be expressed as

hWiii ¼
1

V i

Z
V i

Wi dV ¼ 1

�i
hWii ð14Þ

It is also supposed that Wi may be expressed as the sum of
its intrinsic phase average and a local deviation term:

Wi ¼ hWiii þ ~Wi ð15Þ

where the average of the local deviation is assumed to be
zero, provided that the constraints (1) are satisfied [22,23]:

~Wi

� �
’ 0 ð16Þ

The average operator is applied over Eqs. (7) and (10), then
the use of the averaging theorem [28] leads to the following
equations:
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�bðqCpÞb
ohT bib

ot

¼ r � Kb

� �b � �brhT bib þ
1

V

Z
Abr

nbr
~T b dA

 ! 

þ ~Kb � r~T b

� �!
þ 1

V

Z
Abr

nbr � Kb � rT b dA ð17Þ

in the b-phase and

�rðqCpÞr
ohT rir

ot

¼ r � hKrir � �rr T rh ir � 1

V

Z
Abr

nbr
~T r dA

 ! 

þ ~Kr � r~T r

� �!
� 1

V

Z
Abr

nbr � Kr � rT r dA ð18Þ

in the r-phase.
Now, we have to decide whether thermal equilibrium

may be assumed or not. It is interesting to note that the
choice of one- or two-equation model is also a choice of
a time scale. Indeed, in the case of purely diffusive heat
transfer, one may always choose a sufficiently long time t

so that thermal equilibrium is achieved. In the case of
building insulation, the material is not subject to rapid tem-
perature variations, and it is assumed that the transient
heat transfer is fast enough so that local thermal equilib-
rium may be considered as valid. Furthermore, the contrast
of conductivity between the phases is not high, as the ratio
kwood/kair is about 10. It is shown in [6] that the contrast is
another factor that influences the thermal equilibrium. A
one-equation model is thus chosen in a first approach.
However, numerical experiments should be done in order
to understand the influence of the day/night periodic solic-
itations over the thermal equilibrium assumption.

If we assume that the local thermal equilibrium assump-
tion is valid, then, the two intrinsic phase average temper-
atures may be considered sufficiently close so that a one
temperature model may be developed. The average temper-
ature is

hT i ¼ 1

V

Z
V b

T b dV þ 1

V

Z
V r

T r dV ¼ �bhT bib þ �r T rh ir

ð19Þ
Keeping in mind that we deal with macroscopic quantities,
the local thermal equilibrium condition yields

hT bib ’ T rh ir ð20Þ
then it is evident from (19) that we have

hT i ’ hT bib ’ hT rir ð21Þ
Here, the temperature to be used in the model is simply the
average temperature, but other authors [8] derive the tem-
perature from the average of the enthalpy. They showed that
both the volume averaging and homogenization method
lead to the same one-equation model that does not require
an absolute thermal equilibrium (which may not be achieved
when convective transfer is considered). However, without
convective transfer, the two formulations of the average
temperature yield the same results in term of effective con-
ductivity tensor and closure problems. In the case where
the two intrinsic phase average temperatures are not close
enough, a two-equation model should eventually be used.

A great amount of work is available in the literature on
the derivation of the one equation model and we refer the
reader to [3,4,9] for a comprehensive study, as it will not be
developed here.

The addition of Eqs. (17) and (18) leads to the macro-
scopic equation:

hqCpi
ohT i
ot
¼ r � ðKeff � rhT iÞ ð22Þ

with

qCp

� �
¼ �bðqCpÞb þ �rðqCpÞr

and a macroscopic thermal conductivity tensor of the form:

Keff ¼ �bhKbib þ �rhKrir þ
hKbib � hKrir

V

�
Z

Abr

nbrbb dAþ ~Kb � rbb

� �
þ ~Kr � rbr

� �
ð23Þ

where bb and br are the closure variables, i.e. the vector
fields that map the local temperatures deviations to the gra-
dient of the average temperature. They may be written as

~T b ¼ bb � r Th i þWb ð24Þ
~T r ¼ br � r Th i þWr ð25Þ

where Wb and Wr are two constants (see [3]).

3.3.2. Closure problem

These two vector fields are solutions of the following
quasi-static, integro-differential problem [3], in which peri-
odic boundary conditions are assumed:

r � ~Kb þr � Kb � rbb

� �
¼ ��1

b cb in the b-phase ð26Þ
r � ~Kr þr � Kr � rbrð Þ ¼ ��1

r cr in the r-phase ð27Þ
bb ¼ br on Abr ð28Þ
nbr � Kb � rbb ¼ nbr � Kr � rbr þ nbr � Kr � Kb

� �
on Abr

ð29Þ
bbðrþ liÞ ¼ bbðrÞ; brðrþ liÞ ¼ brðrÞ; i ¼ 1; 2; 3 ð30Þ
bb

� �
¼ 0; brh i ¼ 0 ð31Þ

Integral constant cb and cr are given by

cb ¼
1

V

Z
Abr

nbr � ðKb þ Kb � rbbÞdA ð32Þ

cr ¼ �
1

V

Z
Abr

nbr � Kr þ Kr � rbrð ÞdA ð33Þ

Recalling the boundary condition (29), we see that there
remains only one integral constant since cb = �cr.
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In the original paper of Nozad [4], integral terms cb and
cr are neglected, and the closure problem becomes much
more simple. However we keep them for completeness as
[3] proposed a simple way to compute them.

Indeed if one introduces two new vector fields b�b and b�r
and two scalar fields Bb and Br defined as

bb ¼ b�b þ cbBb ð34Þ

and

br ¼ b�r þ cbBr ð35Þ
then the closure problem (Eqs. (26)–(31)) may be rewritten
into the two following differential problems:

Problem 1

r � ~Kb þr � Kb � rb�b

� �
¼ 0 in the b-phase ð36Þ

r � ~Kr þr � Kr � rb�r
� �

¼ 0 in the r-phase ð37Þ
b�b ¼ b�r on Abr ð38Þ
nbr � Kb � rb�b ¼ nbr � Kr � rb�r þ nbr � ðKr � KbÞ on Abr

ð39Þ
b�bðrþ liÞ ¼ b�bðrÞ; b�rðrþ liÞ ¼ b�r rð Þ; i ¼ 1; 2; 3 ð40Þ

Problem 2

r � ðKb � rBbÞ � ��1
b ¼ 0 in the b-phase ð41Þ

r � ðKr � rBrÞ þ ��1
r ¼ 0 in the r-phase ð42Þ

Bb ¼ Br on Abr ð43Þ
nbr � Kb � rBb ¼ nbr � Kr � rBr on Abr ð44Þ
Bb rþ lið Þ ¼ Bb rð Þ;Br rþ lið Þ ¼ Br rð Þ; i ¼ 1; 2; 3 ð45Þ

Therefore the integral constant may be computed by
using the constraints (31):

cb ¼ �
b�b

D Eb

Bb

� �b ¼ �
b�r
� �r

Brh ir
ð46Þ
3.4. Numerical methods

In order to solve the closure problems (Eqs. (36)–(45)),
the discretization scheme should respect flux conservation
property and must be able to deal with non-diagonal or full
tensor equations that arise due to wood fibre local conduc-
tivity orthotropy. This condition discards the classical 7-
points finite volume scheme. We propose here a method
based on a flux continuous and locally conservative finite
volume scheme presented by Edwards and Rogers [29],
but generalized to 3D problems. The principal steps of
the discretization method are given here.

Considering a regular cartesian grid, the integration of
the diffusive operator $ Æ (K Æ $b) over a cell of volume V

and surface oV for a component b of the vector b may be
expressed as
1

V

Z
V
r � K � rbð Þð ÞdV

¼ 1

V

I
oV

n � K � rbð Þð ÞdS

¼ 1

dx
Kxx

ob iþ 1
2
; j; k

� �
ox

þ Kxy
ob iþ 1

2
; j; k

� �
oy

�

þ Kxz
ob iþ 1

2
; j; k

� �
oz

	

� 1

dx
Kxx

ob i� 1
2
; j; k

� �
ox

þ Kxy
ob i� 1

2
; j; k

� �
oy

�

þ Kxz
ob i� 1

2
; j; k

� �
oz

	

þ 1

dy
Kyx

ob i; jþ 1
2
; k

� �
ox

þ Kyy
ob i; jþ 1

2
; k

� �
oy

�

þ Kyz
ob i; jþ 1

2
; k

� �
oz

	

� 1

dy
Kyx

ob i; j� 1
2
; k

� �
ox

þ Kyy
ob i; j� 1

2
; k

� �
oy

�

þ Kyz
ob i; j� 1

2
; k

� �
oz

	

þ 1

dz
Kzx

ob i; j; k þ 1
2

� �
ox

þ Kzy
ob i; j; k þ 1

2

� �
oy

�

þ Kzz
ob i; j; k þ 1

2

� �
oz

	

� 1

dz
Kzx

ob i; j; k � 1
2

� �
ox

þ Kzy
ob i; j; k � 1

2

� �
oy

�

þ Kzz
ob i; j; k � 1

2

� �
oz

	
ð47Þ

Here K is supposed piecewise constant over each cell,
although great variations may appear at the interfaces.
The notation Kxy is thus used for Kxy(i, j, k).

The estimation of the three components of the gradient
of b is the main difficulty in the full tensor discretization.
The idea is to divide a cell into eight sub-cells in which
the closure variable is supposed to vary linearly, so that b

may be expressed in each sub-cell as

b ¼ Gxxþ Gyy þ Gzzþ G ð48Þ
Then, the gradient components in a sub-cell, Gx, Gy and Gz

are easily expressed as a function of the values of the three
closure variables at the sub-cell interfaces and the one at
the cell center. For example, if we consider the sub-cell with
positive coordinates relative to the cell center C(i, j, k) (see
Fig. 12), and if we note the points on this sub-cell interface
as Iðiþ 1

2
; jþ 1

4
; k þ 1

4
Þ, Jðiþ 1

4
; jþ 1

2
; k þ 1

4
Þ and Kðiþ 1

4
; jþ

1
4
; k þ 1

2
Þ, then the expressions of the three spatial deriva-

tives of b are given by



Fig. 12. Positions of the closures variables on the sub-cell interfaces.
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ob
ox
¼ Gx ¼

1

dx
ð3bðIÞ � bðJÞ � bðKÞ � bðCÞÞ ð49Þ

ob
oy
¼ Gy ¼

1

dy
ð�3bðIÞ þ bðJÞ � bðKÞ � bðCÞÞ ð50Þ

ob
oz
¼ Gz ¼

1

dz
ð�3bðIÞ � bðJÞ þ bðKÞ � b Cð ÞÞ ð51Þ

The continuity of the closure variables (28) is here implicit
since the same variable is used at the interface between two
cells. The last step in the discretization is to get an expres-
sion of the gradient components in terms of the closure
variables at cell centers only. Substitution of the gradient
expressions (49)–(51) into the flux continuity condition
(29) for the 3 interfaces of a sub-cell, leads to a linear sys-
tem of 12 equations, linking closure variables at cell center
and interfaces. Resolution of this (12 · 12) linear system is
done numerically by gaussian elimination and provides an
expression of the gradients at the sub-cell interfaces as a
function of cell center closure variables. The same work
is done for each sub-cell, leading to the searched expression
of the flux through the cell faces. This scheme requires 27
points for a full tensor equation discretization. The linear
systems resulting from the closure problems discretization
are solved with a preconditioned Bi-Conjugate Gradient
Stabilized algorithm [30].
Table 1
Numerical results for two samples with homogenized and non-homogenized w

Macroscopic

Sample 1 (non-filled fibres) 0.26 mm3 (0.94 · 0.94 · 0.3 mm3)
8.2 0:13

0:13 7.7

�0:08 0:08

2
64

Sample 2 (filled fibres) 0.26 mm3 (0.94 · 0.94 · 0.3 mm3)
8.6 0:21

0:2 8.4

�0:03 0:05

2
64
3.5. Results

3.5.1. Effect of fibres homogenization

Some assumptions introduced by the wood fibres
homogenization model (especially the square section and
the constant porosity of the fibres) may seems disputable.
In order to estimate the influence of the wood fibres
homogenization over the macroscopic thermal conductiv-
ity, two computations are realised over a high resolution
image (4.91 lm/pixel) of the wood insulator material, with
filled and non-filled lumens:

• Sample 1: 0.26 mm3 (192 · 192 · 64 voxels), with non-
filled lumen

• Sample 2: 0.26 mm3 (192 · 192 · 64 voxels), with filled
lumens

The real thermal conductivity is affected to the wood
cell-wall of sample 1, and the homogenized conductivity
value is affected on the filled fibres of sample 2. The total
porosity (i.e. the sum of the fibres porosity and outer
porosity) is also provided for the sample 1. The measured
fibres porosity is of 23% for this sample, which is slightly
lower than the mean fibres porosity measured on larger
volumes. In this case, the values of the homogenized con-
ductivity, calculated with Eqs. (3) and (4), are Klong =
0.68 W m�1 K�1 and Ktrans = 0.32 W m�1 K�1. The results
summarized in Table 1 show that the wood fibres homog-
enization process tends to slightly increase the effective
conductivity. The relative difference between the thermal
conductivity tensor components of samples 1 and 2 is at
most 8%. Given the complexity of the wood fibres geome-
try, it is remarkable that the simple model used to calculate
the effective thermal conductivity of wood fibres gives such
a good agreement. We can now be confident that the use of
homogenized fibres does not affect notably the computed
results.

3.5.2. Influence of thermal contact resistance

Although the contacts between the fibres are often punc-
tual, the modelisation does not take into account the pos-
sible thermal interfacial barriers. Indeed, in order to do
so, we should be able to identify the contacts, thus a prior
segmentation of the fibres is necessary. This segmentation
ood fibres

thermal conductivity tensor · 10�2 W m�1 K�1 Porosity

�0:08

0:08

4.7

3
75

74% (total porosity: 80%)

�0:03

0:05

5.1

3
75

74%
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step is a very complex task for this kind of materials and is
still a work in progress.

In order to give an order of magnitude of such thermal
barriers, computations are realised on 2D images of
128 · 128 voxels representing a transverse and a longitudi-
nal section of an intersection of two fibres, as shown in
Fig. 13. The thermal contact resistance is modelled as a
thin air layer of one pixel thickness. Its value is therefore
overestimated here, because the two fibres are totally sepa-
rated by the air layer. In this example, the porosity of the
images is close to the real porosity of the sample (about
90%) and the conductivity tensor is as calculated in para-
graph 3.1. The results of these simple tests show that the
relative difference between the effective conductivities with
or without thermal barrier is at most 2%. Neglecting the
effect of thermal contact resistance has therefore very little
influence on the heat transfer process considered.

3.5.3. Computation of the effective thermal conductivity

of fibrous insulators

The effective thermal conductivity tensor of the wood/
polymer composite material is computed for different aver-
aging volume sizes within a 3D image with filled and
homogenized fibres at a resolution of 19.64 lm/pixel:
Fig. 13. Two configurations for testing the influence of interfacial thermal ba
(c) and (d) correspond to a longitudinal section.
• Sample 3: 1 mm3 (64 · 64 · 32 voxels)
• Sample 4: 4 mm3 (128 · 128 · 32 voxels)
• Sample 5: 13.4 mm3 (192 · 192 · 48 voxels)
• Sample 6: 17.9 mm3 (192 · 192 · 64 voxels)

The size of the estimated REV for geometrical and mor-
phological properties is 13.4 mm3. Low resolution images
are so chosen to make the numerical computations. It
should be stressed that, if the connectivity of the fibres net-
work and the porosity may be conserved from a resolution
to another, then the discretization will have a negligible
effect over the computed macroscopic conductivity. Fur-
thermore, tests on simple 2D images tend to show that
the discretization does not modify the macroscopic results
in a very sensible way, as long as the connectivity and
porosity remain close.

Table 2 sums up the results and provides theoretical
highest and lowest bounds for parallel and serial fibres
arrangement, calculated with the measured sample porosity
and wood fibres porosity. These bounds are given by

kparallel ¼ �airkair þ �fibresK long ð52Þ

kserial ¼
kairK trans

�airK trans þ �fibreskair

ð53Þ
rriers: images (a) and (b) correspond to a transverse section and images



Table 2
Numerical results and available experimental data for the wood/polymer fibres insulator

Macroscopic thermal
conductivity tensor · 10�2 W m�1 K�1

Porosity Lowest bound
· 10�2 W m�1 K�1

Highest bound
· 10�2 W m�1 K�1

Sample 3: 1 mm3

(1.3 · 1.3 · 0.6 mm3)
3.6 �0:17 0:05

�0:17 2.9 �0:04

0:05 �0:03 2.9

2
64

3
75

96% 2.7 5.3

Sample 4: 4 mm3

(2.5 · 2.5 · 0.6 mm3)
4 �0:26 0:06

�0:26 3.3 �0:08

0:06 �0:08 3.1

2
64

3
75

94% 2.7 6.4

Sample 5: 13.4 mm3

(3.8 · 3.8 · 0.93 mm3)
4.1 �0:18 0:03

�0:18 3.5 �0:04

0:03 �0:08 3.1

2
64

3
75

93.5% 2.8 6.7

Sample 6: 17.9 mm3

(3.8 · 3.8 · 1.3 mm3)
4 �0:13 0:03

�0:13 3.5 �0:04

0:03 �0:08 3.1

2
64

3
75

93.8% 2.8 6.5

Hot-wire experimental data
(isotropic assumption)

5 0 0

0 5 0

0 0 5

2
64

3
75	 10%

n/a
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The available experimental values come from measure-
ments realized by the hot-wire method [16]. The hot-wire
was put in longitudinal and transverse directions of the
sample, i.e. planes respectively parallel and perpendicular
to the sample surface, but no anisotropy was detected by
the measures. The isotropy of the sample was then assumed
in the identification process. It seems that the anisotropy is,
in this case, too small to be detected by the experimental
device. The experimental hot-wire values should so be
taken as a basis for an order of magnitude comparison with
the numerical values.

The computed thermal conductivities show only very
small variations from a volume of 4 mm3, which is slightly
smaller that the REV established in the first part of this
paper. This is not surprising, since this volume corresponds
to the stabilization of the porosity, which is a key parame-
ter, in these materials, that influence the effective thermal
conductivity. Furthermore, the granulometric curves are
not too far from the stabilized curves (see Figs. 5 and 6).
It is however interesting to notice that this volume contains
approximatively one correlation length in the transverse
direction Oz, which is a strong indication that this material
may be treated as a stratified medium.

The results are in agreement with the order of magni-
tude of the experimental data and the microstructure geo-
metric anisotropy is correctly reflected in the computed
conductivity tensor components. It should be stressed that
the time-scales related to the experimental measurements
remain small (about 5 min), so that the local thermal equi-
librium may not always be achieved. Although this
assumption must be validated, it might explain the slight
differences between experimental and numerical values [31].
On a second series of numerical computations (Table 3),
the other wood based insulator is considered. It was found
that the size of the averaging volume is smaller for this
material, which is related to its higher density. Indeed a
volume size of approximatively 1.1 (1.9 · 1.9 · 0.3) mm3

seems to be sufficiently representative regarding the mor-
phological properties. This allows to work on images with
higher resolutions. In a similar way as above, computations
are done on increasing volume sizes, within an image fea-
turing a 9.82 lm/pixel resolution. The stratified structure
of this material allows to work on thin samples of
0.3 mm thickness:

• Sample 7: 0.5 mm3 (128 · 128 · 32 voxels)
• Sample 8: 1.1 mm3 (192 · 192 · 32 voxels)
• Sample 9: 2 mm3 (256 · 256 · 32 voxels)

The experimental data available concerning this mate-
rial are obtained from a combined hot-strip and hot-wire
method described in [16], which allows the identification
of the thermal conductivity of orthotropic materials. The
hot-wire device is used to identify the longitudinal conduc-
tivity, while the hot-strip device is used for the transverse
conductivity identification. It is interesting to note that
the observation time scales involved when using the hot-
strip device are greater than for the hot-wire one (up to
20 minutes), so thermal equilibrium is more likely to occur
and the experimental transverse conductivity should be clo-
ser to the computed one.

It appears from the numerical results on samples 7, 8
and 9 that the computed thermal effective conductivity
values remain very close from a size of an averaging



Table 3
Numerical results and available experimental data for the wood fibres insulator

Macroscopic thermal
conductivity tensor · 10�2 W m�1 K�1

Porosity Lowest bound
· 10�2 W m�1 K�1

Highest bound
· 10�2 W m�1 K�1

Sample 7: 0.5 mm3

(1.3 · 1.3 · 0.3 mm3)
6.9 0:09 �0:005

0:09 6.7 0:11

�0:005 0:11 4.9

2
64

3
75

77% 3.3 17.2

Sample 8: 1.1 mm3

(1.9 · 1.9 · 0.3 mm3)
7.8 0:03 0:007

0:03 7.1 0:15

0:007 0:15 5.2

2
64

3
75

75% 3.4 18.5

Sample 9: 2 mm3

(2.5 · 2.5 · 0.3 mm3)
7.6 0:00 0:01

0:01 7.0 0:19

0:01 0:19 5.2

2
64

3
75

75% 3.4 18.5

Combined hot-strip/hot-wire
experimental data

10.7 0 0

0 10.7 0

0 0 5.3

2
64

3
75	 10%

n/a
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volume larger than 1.1 mm3. Again, it seems that the size of
the REV was correctly estimated by the morphological
analysis. Moreover, a very good agreement with the exper-
imental transverse conductivity value is observed. In this
case, the transverse thermal conductivity value is also avail-
able from the constructor and the given value of
0.042 W m�1 K�1 is still not far from our values. The com-
puted longitudinal components values show, however,
noteworthy differences (up to 34%) with the experimental
data. As said previously, the hot-wire data give an order
of magnitude for the expected values, so the numerical
results may be considered satisfactory.
4. Conclusion

In this paper, we proposed a general approach to inves-
tigate the microstructure and compute the macroscopic
thermal properties of real fibrous materials with the vol-
ume averaging technique. A thorough characterization of
the microstructure is performed through 3D image analy-
sis, using the mathematical morphology concepts. It is also
shown that the morphological analysis provides a correct
estimation of a REV. Furthermore, tools to detect and
quantify structural and local anisotropy are presented,
allowing the identification of the local thermal conductivity
of wood fibres.

The numerical results are found to be of the same order
of magnitude as the experimental values. In particular, the
transverse conductivity of the wood insulator is very close
to the data provided by the constructor and retrieved from
the hot-strip method. These results hence tends to validate
our approach. The difference observed between the hot-
wire and numerical results may indeed be imputed to the
lack of accuracy that arise in measures realized on hetero-
geneous media [31] and to the short time scales that may
prevent the thermal equilibrium to be achieved. However,
comparison with macroscopic temperature fields obtained
by direct simulation should also be done in order to test
the thermal equilibrium assumption, particularly in the
case of periodic day/night thermal solicitations.
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